OPTIMALISASI ARUS LALULINTAS PERKOTAAN MENGGUNAKAN REINFORCEMENT LEARNING

Authors

  • Muhammad Al Fatih Universitas Pamulang
  • Ahmad Tazkiarni Ramadhan Universitas Pamulang
  • Nikri Aria Pratama Universitas Pamulang
  • Ahmad Aqil Universitas Pamulang
  • Aries Saifudin Universitas Pamulang

Abstract

This study aims to optimize urban traffic flow using a reinforcement learning approach. With rapid urban population growth, traffic issues become increasingly urgent to address to improve transportation efficiency and reduce congestion. In this research, we collect traffic data from a specific urban area and apply a reinforcement learning model to develop a system that can learn traffic patterns and make optimal decisions for traffic management. We conduct testing of the system using simulations and in real-world environments to evaluate its performance. The analysis results indicate that this approach is effective in enhancing traffic flow and reducing congestion in the studied urban area. Potential implications of this research include improving urban transportation efficiency and enhancing the quality of life for city residents.

References

Annisa, & Budi, A. (2023). Optimalisasi Mobilitas Pintar Sebagai Landasan Pembangunan Kota Pintar di Ibu Kota Nusantara Negara Indonesia ( IKN ). 7.

Arinal, V., Nuari, F. A., Sanip, W., Tuafik, M., & Sarikah, D. (2024). Implementasi Alat Deteksi Plat Nomor Kendaraan Untuk Otomatisasi Palang Pintu Pada Lingkungan Perumahan RT 05/05 Gondrong Dengan Machine Learning. 1.

Glair.ai. (2022). Mengenal Tentang Reinforcement Learning. 1.

Hernanto, M. S. (2021). Optimalisasi Pengaturan Sinyal Lampu Lalu Lintas Menggunakan Kendali Adaptif dengan Algoritma Double Deep Q-Network. 1.

Tamba, T., Halim, L., Hernando, Darwin, S., & Hermanto, K. L. (2021). Pemodelan dan optimasi dinamika networked control systems berbasis deep reinforcement learning : laporan penelitian. 1.

Jasmine, P., Carlos R. (2022), Resource Management in 5G Networks Assisted by UAV Base Stations: Machine Learning for Overloaded Macrocell Prediction Based on Users' Temporal and Spatial Flow

U. Gunarathna, S. Karunasekera, R. Borovica-Gajic, E. Tanin (2022), Real-Time Intelligent Autonomous Intersection Management Using Reinforcement Learning

Zhou D., Gayah V.V.(2023), Scalable Multi-Region Perimeter Metering Control for Urban Networks: A Multi-Agent Deep Reinforcement Learning Approac

Published

2024-07-01

Issue

Section

Articles