ANALISIS PENGGABUNGAN DATA RUMAH SAKIT MENGGUNAKAN PROSES EKTRAK TRANSFORMASI DAN LOAD DENGAN METODE K-MEANS
Keywords:
penggabungan data; data rumah sakit; proses ETL; klastering K-means;Abstract
The increasing number of Brawijaya Healthcare hospitals has led to the need for a more efficient and effective data management system. Data fusion is a process of combining data from multiple sources into a single data set. This can be used to improve the quality and accuracy of data, as well as to identify patterns and trends that may not be visible in individual data sets. In this paper, we propose a data fusion method for hospital data using the extract transform and load (ETL) process and the K-means clustering algorithm. The ETL process is used to clean and prepare the data for analysis. The K-means clustering algorithm is used to group the data into clusters based on their similarities. We evaluated our method using data from a real hospital in Indonesia. The results showed that our method was able to improve the quality and accuracy of the data, as well as to identify patterns and trends that were not visible in the individual data sets. The proposed method has the potential to be used in other hospitals to improve the efficiency and effectiveness of data management.
References
Ismail Virgo, Sarjon Defit, Yuhandri Yunus (2020), “Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering.
R. A. Indraputra, R. Fitriana (2020), “K-Means Clustering Data COVID-19”
Rachmad Abduh (2021), “Kajian Hukum Rekam Medis Sebagai Alat Bukti Malapraktik Medis”
Latifa Suryani Nasution,Widiarti Rista Maya, Jufri Halim, Marsono. (2020) “Data Mining Untuk Menganalisa Pola Pembelian Perak Dengan Menggunakan Algoritma Fp-Growth Pada Toko Emas Dan Perak Adi Saputra Tanjung”
Muhammad Syahril, Kamil Erwansyah, Milfa Yetri. (2020), “Penerapan Data Mining Untuk Menentukan Pola Penjualan Peralatan Sekolah Pada Brand Wigglo Dengan Menggunakan Algoritma Apriori”
Rian Ordila (2020) “Penerapan Data Mining untuk Penglompokkan Data Rekam Medis Pasien berdasarkan Jenis Penyakit dengan Algoritma Clustering”
Tuti Hartati1, Odi Nurdiawan, Eko Wiyandi. (2021), “Analisis dan Penerapan Algoritma kmeans dalam strategi promosi kampus akademi maritim suaka bahari”
N. Gokilavani, B. Bharathi. (2021), “Test case prioritization to examine software for fault detection using PCA extraction and K-means clustering with ranking”
Tuti Hartati1, Odi Nurdiawan, Eko Wiyandi. (2021) “Analisis dan Penerapan Algoritma kmeans dalam strategi promosi kampus akademi maritim suaka bahari”
Amjad Rehman Khan (2020), “Brain tumor segmentation using Kmeans clustering and deep learning with synthetic data augmentation for classification”
Nurul Rahmadani, Edi Kurniawa (2020) “Implementasi Metode K-Means Clustering Tunggakan Rekening Listrik pada PT. PLN (Persero) Gardu Induk Kisaran”
Alireza Hajian dan Saeedeh Asadi (2022), “Data Fusion for Hospital Information Systems”
Mohammad Reza Sadeghi dan Mohammad Reza Amini (2021) “A Data Fusion Approach for Improving the Efficiency and Effectiveness of Hospital Management”
Ahmed El-Khodary dan Mohamed El-Sherif (2020), “Data Fusion for Healthcare Analytics”
David A. Johnson dan Michael E. Cohn (2019) “Data Fusion for Improving Patient Care”
.