ANALISIS SENTIMEN PENGGUNA TOKOCRYPTO SEBAGAI SARANA INVESTASI DI MEDIA SOSIAL X MENGGUNAKAN METODE KNN
Abstract
The advancement of digital technology has driven a significant transformation in the investment landscape, particularly through digital assets such as cryptocurrency. Tokocrypto, as one of the local crypto exchanges in Indonesia, has become the focus of social media users, especially on X (formerly Twitter), who often express their opinions about the platform. To understand user sentiment, a sentiment analysis was conducted using 1,386 tweets collected with the keywords “investasi tokocrypto” and “cex tokocrypto”, which were then manually filtered to remove irrelevant data, resulting in a final dataset of 600 tweets. The data was collected through a crawling method and cleaned through preprocessing steps including case folding, normalization, tokenizing, stopword removal, and stemming. After labeling, neutral sentiments were removed, leaving 417 tweets categorized into positive and negative sentiments. The classification process was carried out using the K-Nearest Neighbor (K-NN) method, evaluated across various training and testing ratios and different K values. The best-performing model was achieved with K=7 and an 80:20 ratio, producing the highest performance with accuracy = 74%, precision = 75%, F1-score = 78%, and recall = 81%. The results of this study demonstrate the effectiveness of the K-Nearest Neighbor method in sentiment analysis and provide insights into user perceptions of Tokocrypto as an investment platform on social media platform X.
References
E. Suyanti and N. U. Hadi, “Analisis Motivasi Dan Pengetahuan Investasi Terhadap Minat Investasi Mahasiswa di Pasar Modal,” Edunomic Jurnal Pendidikan Ekonomi, vol. 7, no. 2, p. 108, Sep. 2019, doi: 10.33603/EJPE.V7I2.2352.
R. Vindua and A. U. Zailani, “Analisis Sentimen Pemilu Indonesia Tahun 2024 Dari Media Sosial Twitter Menggunakan Python,” JURIKOM (Jurnal Riset Komputer), vol. 10, no. 2, p. 479, Apr. 2023, doi: 10.30865/JURIKOM.V10I2.5945.
S. S. Salim and J. Mayary, “ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP DOMPET ELEKTRONIK DENGAN METODE LEXICON BASED DAN K – NEAREST NEIGHBOR,” Jurnal Ilmiah Informatika Komputer, vol. 25, no. 1, pp. 1–17, Apr. 2020, doi: 10.35760/IK.2020.V25I1.2411.
I. Yolanda, H. Fahmi, and [ Penerapan, “Penerapan Data Mining Untuk Prediksi Penjualan Produk Roti Terlaris Pada PT.Nippon Indosari Corpindo Tbk Menggunakan Metode K-Nearest Neighbor,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), vol. 3, no. 1.1, pp. 9–15, 2020, doi: 10.9767/JIKOMSI.V3I1.1.83.
G. A. Sandag and J. Waworundeng, “Public Sentiment Analysis Against Tokocrypto Exchange on Twitter Using LSTM Method,” CogITo Smart Journal, vol. 8, no. 2, pp. 411–421, Dec. 2022, doi: 10.31154/COGITO.V8I2.418.411-421.
C. Rio, A. Toruan, N. Yudistra, and R. S. Perdana, “Analisis Sentimen Tokocrypto pada Twitter menggunakan Metode Long Short-Term Memory,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 2, pp. 719–726, Mar. 2023, Accessed: May 27, 2025. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12293
A. Kusuma, E. Ermatita, and H. N. Irmanda, “Analisis Sentimen Pada Ulasan Aplikasi Indodax di Google Play Store Menggunakan Metode Support Vector Machine,” Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya, vol. 3, no. 2, pp. 773–782, Aug. 2022, Accessed: May 27, 2025. [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/2214
H. Sibyan and N. Hasanah, “ANALISIS SENTIMEN ULASAN PADA WISATA DIENG DENGAN ALGORITMA K-NEAREST NEIGHBOR (K-NN),” Jurnal Penelitian dan Pengabdian Kepada Masyarakat UNSIQ, vol. 9, no. 1, pp. 38–47, Jan. 2022, doi: 10.32699/PPKM.V9I1.2218.
D. Ardiyansyah and N. Oktafiani, “PERBANDINGAN METODE PENGUKURAN JARAK PADA K-NEAREST NEIGHBOUR DALAM KLASIFIKASI DATA TEKS CARDIOVASKULAR,” Journal of Information Systems Management and Digital Business, vol. 1, no. 2, pp. 116–122, Jan. 2024, doi: 10.59407/JISMDB.V1I2.260.







