ANALISA PERFORMA METODE NEWTON-RAPHSON DAN ITERASI TITIK TETAP UNTUK MENYELESAIKAN AKAR SISTEM PERSAMAAN NON-LINIER

Authors

  • Iis Aisyah Universitas Pamulang
  • Aulia Ikhsan Universitas Pamulang

Abstract

Non-linear equations are one of the fundamental problems that often arise in various scientific disciplines, such as physics, engineering, economics and computer science. Solving non-linear equations analytically is often not possible due to the complex nature of the functions involved. Therefore, numerical methods such as Newton-Raphson and Fixed Point Iteration are the main choice to approach solutions with high accuracy. This research aims to analyze the performance of the two methods in solving systems of non-linear equations. The analysis is carried out by comparing aspects of convergence speed, solution accuracy, and stability to changes in initial values ​​and the nature of the function being analyzed. The Newton-Raphson method is known for its fast quadratic convergence, but requires derivatives of functions that are not always practical to calculate. Meanwhile, the Fixed Point Iteration method is simpler in implementation, but has slower linear convergence and relies heavily on the selection of recursive functions and initial values. The research results show that the Newton-Raphson method is superior in terms of convergence speed, especially for functions with derivatives that can be calculated easily. On the other hand, Fixed Point Iteration is more flexible for use on functions without explicit derivatives, although it requires more iterations to achieve the same accuracy. This research provides guidance for practitioners in choosing the most appropriate numerical method based on the characteristics of the problems faced, so that it can be implemented optimally in various application fields.

References

A. Ikhsan and I. Aisyah, "Analisis kepuasan siswa terhadap layanan sekolah menggunakan Fuzzy Inference System metode Tsukamoto," Jurnal ESIT (E-Bisnis, Sistem Informasi, Teknologi Informasi), vol. 17, no. 3, 2022.

K. Atkinson and W. Han, Elementary Numerical Analysis, 3rd ed. Wiley, 2003.

B. S. Erviana, Amrullah, T. W. Triutami, and S. Subarinah, “Efisiensi penyelesaian numerik persamaan non-linear dengan metode Newton Raphson dan metode secant menggunakan program software berbasis Python,” Pendas : Jurnal Ilmiah Pendidikan Dasar, pp. 1719–1729, 2023.

I. Aisyah and A. Ikhsan, "Pengenalan Google Drive sebagai media penyimpanan berbasis digital kepada siswa dan siswi SMP Cahaya Ashilla," JAMAIKA: Jurnal Abdi Masyarakat, vol. 2, no. 2, 2022.

Intisari, “Analisis metode Newton-Raphson ganda orde konvergensi empat dalam menyelesaikan sistem persamaan nonlinear,” Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster), pp. 213–220, 2019.

Jurnal Ilmiah MATRIK, “Multiplisitas Newton dan titik tetap atraktif dalam menentukan kekonvergenan,” pp. 333–338, 2020.

J. Lolowang, “Analisis numerik dalam penentuan kecepatan gerak penerjun payung,” Jurnal Pendidikan Fisika UNIMA, pp. 52–56, 2020.

Maxrizal, “Modifikasi garis singgung untuk mempercepat iterasi pada metode Newton Raphson,” EULER: Jurnal Ilmiah Matematika, Sains dan Teknologi, pp. 351–360, 2023.

Nurwahidah, A. Hasan, and A. Bani, “Aplikasi metode Newton-Raphson dalam analisis suku bunga kredit kendaraan bermotor (studi kasus kredit motor Yamaha Gear 125),” Jurnal Matematika dan Statistika, pp. 130–133, 2023.

J. Ritonga and D. Suryana, “Perbandingan kecepatan konvergensi akar persamaan non linier metode titik tetap dengan metode Newton Raphson menggunakan MATLAB,” Jurnal Informatika dan Sistem Informasi, pp. 51–64, 2019.

Rochmad, “Aplikasi metode Newton-Raphson untuk menghampiri solusi persamaan non linear,” Jurnal MIPA, pp. 193–200, 2013.

E. Sunandar and Indrianto, “Perbandingan metode Newton-Raphson & metode secant untuk mencari akar persamaan dalam sistem persamaan non-linier,” Jurnal Pengkajian dan Penerapan Teknik Informatika, pp. 72–79, 2020.

M. Syafi’i, R. Ridhallah, and R. A. Nur, “Penerapan metode Newton Raphson untuk pencarian akar pada fungsi kompleks,” JOSTECH, pp. 71–78, 2023.

Published

2025-04-29

Issue

Section

Articles