PENGENALAN ANALISIS SENTIMEN BAGI SISWA AS-SAKINAH FONDATION BAMBU APUS PAMULANG TANGERANG SELATAN

PENGENALAN ANALISIS SENTIMEN BAGI SISWA AS-SAKINAH FONDATION BAMBU APUS PAMULANG TANGERANG SELATAN.

Authors

  • Adam Muiz Universitas Pamulang
  • Raditia Vindua Universitas Pamulang
  • Nurhayati Universitas Pamulang

Abstract

Introduction To Sentiment Analysis For As-Sakinah Students Of The Bamboo Apus Pamulang Fondation, South Tangerang. This Community Service was held to provide understanding to the students of the As-Sakinna Foundation so that in order to express their emotions and opinions, there are three main types of sentiment: Emotion, Opinion, and Polarity. Apart from that, it is also important to understand that the complexity of sentiment is not just black and white, but there are many factors that influence a person's sentiment. For this reason, the Pamulang University Community Service team provides outreach regarding the basic principles of sentiment analysis. This Community Service activity is carried out using the workshop method, where the method is carried out in several forms of activities, such as lectures as well as presenting material regarding the basics of sentiment analysis using PowerPoint, Infocus, providing basic material, application in life, as well as describing technological developments related to analysis. sentiment for the future. With this method, students and teachers have more inspiration and knowledge about how to carry out sentiment analysis. This community service activity went smoothly, on time, and as expected. This was proven by the participants' active participation in the entire event process and the question and answer process regarding the material provided.

References

Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM).

Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.0813944

Arya Fernandes, Edbert Gani suryahudaya, N. O. (2023). Pemilih Muda Dalam Pemilihan Umum 2024: https://www.csis.or.id/publication/pemilih-muda-dalam-pemilihan-umum-2024-dinamis-adaptifdan-responsif/

Azhar, R., Surahman, A., & Juliane, C. (2022). Analisis Sentimen Terhadap Cryptocurrency Berbasis Python TextBlob Menggunakan Algoritma Naïve Bayes. Jurnal Sains Komputer & Informatika (J-SAKTI, 6(1), 267–281.

Bara, E. A. B., Nasution, K. A., Ginting, R. Z., & Kartini. (2022). Penelitian tentang Twitter. Jurnal Edukasi Nonformal, 3(2), 167–172.

Binus University. (2023). Analisis Sentimen dan Jenisnya. https://sis.binus.ac.id/2023/11/24/analisissentimen-dan-jenisnya/ Cahyono, A. S. (2022). PENGARUH MEDIA SOSIAL TERHADAP PERUBAHAN SOSIAL MASYARAKAT DI INDONESIA. E-Journal Marine Inside, 1(2), 1–32. https://doi.org/10.56943/ejmi.v1i2.9

Duei Putri, D., Nama, G. F., & Sulistiono, W. E. (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika Dan Teknik Elektro Terapan, 10(1), 34–40. https://doi.org/10.23960/jitet.v10i1.2262

Fakhri, A., & Winursito, Y. C. (2024). Analisis Penumpang Kapal Titanic Menggunakan Titanic Dataset Dengan Bantuan Pemrograman Python. Jurnal Sains Student Research, 2(1), 537–542. https://ejurnal.kampusakademik.co.id/index.php/jssr

Fauziyyah, A. K. (2020). Analisis Sentimen Pandemi Covid19 Pada Streaming Twitter Dengan Text Mining Python. Jurnal Ilmiah SINUS, 18(2), 31. https://doi.org/10.30646/sinus.v18i2.491

Fitriyyah, S. N. J., Safriadi, N., & Pratama, E. E. (2019). Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 5(3), 279. https://doi.org/10.26418/jp.v5i3.34368

Gusti Grehenson. (2023). Pemilih Muda Cenderung Mudah Berubah dan Suka Konten Politik Ringan. https://ugm.ac.id/id/berita/pemilih-muda-cenderung-mudah-berubah-dan-suka-konten-politikringan/ Hadiono, K., & Noor Santi, R. C. (2020). Menyongsong Transformasi Digital. Proceeding Sendiu, July, 978–979. https://www.researchgate.net/publication/343135526_MENYONGSONG_TRANSFORMASI_ DIGITAL

Havadz Faradiana, Albar Rubhasy, Y. F. W. (2024). Scientica Scientica. 2, 126–138. Lukmana, D. T., Subanti, S., & Susanti, Y. (2019). Analisis Sentimen Terhadap Calon Presiden 2019 Dengan Support Vector Machine Di Twitter. Seminar Nasional Penelitian Pendidikan Matematika (SNP2M) 2019 UMT, 2002, 154–160.

Mahawardana, P. P. O., Imawati, I. A. P. F., & Dika, I. W. (2022). Analisis Sentimen Berdasarkan Opini dari Media Sosial Twitter terhadap “Figure Pemimpin” Menggunakan Python. Jurnal Manajemen Dan Teknologi Informasi, 12(2), 50–56. https://ojs.mahadewa.ac.id/index.php/jmti/article/view/2111

Mahbubah, L. D., & Zuliarso, E. (2019). Analisa Sentimen Twitter Pada Pilpres 2019 Menggunakan Algoritma Naive Bayes. Sintak, 194–195. https://www.unisbank.ac.id/ojs/index.php/sintak/article/view/7585

Minarni, S.Pd., M. S. (2023). Pandangan Mahasiswa Jambi Terhadap Pilpress 2024. https://www.unja.ac.id/pandangan-mahasiswa-universitas-jambi-mengenai-pilpres-2024/ MULIA, U. M. (2022). Analisis Sentimen (Sentiment Analysis) : Definisi, Tipe dan Cara Kerjanya.

Published

2024-08-02

Issue

Section

Articles