PREDIKSI HARGA MINYAK MENTAH DENGAN MENGGUNAKAN ALGORITMA CART (CLASSIFICATION AND REGRESSION TREE)

Authors

  • Muhammad Reynaldi Universitas Pamulang
  • Santi Rahayu Universitas Pamulang
  • Teti Desyani Universitas Pamulang

Abstract

Crude oil is an important energy source that experiences significant price fluctuations due to various factors such as geopolitics and global market dynamics. Research conducted by Muhammad Reynaldi in 2024 using the title ‘‘Crude Oil Price Prediction Using the CART (Classification and Regression Tree) Algorithm’’, aims to disseminate examples of crude oil price predictions carefully and easily interpreted. The problem faced in this study is the difficulty of predicting crude oil prices due to fluctuations determined by many external factors. The purpose of this study is to create a more accurate prediction method with traditional methods, and to assist decision making in the energy sector. The results of the study show that the CART solving procedure for predicting crude oil prices with an MSE value of 0.892, an MAE value of 0.700, an RSME value of 0.944, and an R-square value of 0.957. This study places significance on overcoming the challenges of crude oil price fluctuations and provides simple solutions for governments, companies, and energy industry players.

References

Aliffia, N., Sediono, Suliyanto, Mardianto, M. F., & Amelia, D. (2023). Modeling Of World Crude Oil Price Based On Pulse Function Intervention Analysis Approach. Media Statistika, 136-147.

Alpaydin, E. (2021). Machine Learning: The New AI. MIT Press Journal, 9-27.

Anderson, & Williams. (2023). Python Libraries for Machine Learning: A Comprehensive Review. Journal of Machine Learning Research (JMLR), 1-45.

Anisa, N. (2022, Febuary 14). Mengenal Artificial Neural Network. Retrieved from BINUS University School of Information Systems: https://sis.binus.ac.id/2022/02/14/mengenal-artificial-neural-network/

AWS. (2024). Amazon Forecast Panduan Developer. Amazon Forecast, 105-110.

Bollapragada, R., Mankude, A., & Udayabhanu, V. (2021). Forecasting The Price Of Crude Oil. DECISION, 207–231.

Chen, C. Y., & Chang, Y.-W. (2024). Missing Data Imputation Using Classification And Regression Trees. PeerJ Comput, 72-103.

Chen, E., & He, X. J. (2019). Crude Oil Price Prediction with Decision Tree Based Regression Approach. Journal of International Technology and Information Management, 1-16.

Delgado, M. F., & Cernadas, E. (2023). Do We Need Hundreds Of Classifiers To Solve Real World Classification Problems Machine Learning. Machine Learning, 1381-1407.

Dombrowski, Q., Gniady, T., & Kloster, D. (2019). Introduction to Jupyter Notebooks. Programming Historian 8, 67-88. doi:10.46430/phen0087

Gao, S., & Lei, Y. (2019). A New Approach For Crude Oil Price Prediction Based On Stream. Geoscience Frontiers 8, 183-187.

Gasper, L., & Mbwambo, H. (2023). Forecasting Crude Oil Prices By Using ARIMA Model: Evidence From Tanzania. Journal of Accounting, Finance and Auditing Studies, 158-175.

Gholizadeh, & Samira. (2022). Top Popular Python Libraries in Research. Journal of Robotics and Automation Research, 142-145.

González-Carrillo, C. D., Restrepo-Calle, F., Ramírez-Echeverry, J. J., & González, F. A. (2021). Automatic Grading Tool for Jupyter Notebooks in Artificial Intelligence Courses. Sustainability, 33-39.

Hunter, & D., J. (2021). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 90-95.

Irmanita, R., Prasetiyowati, S. S., & Sibaroni, Y. (2021). Classification of Malaria Complication Using CART (Classification and Regression Tree) and Naïve Bayes. RESTI Journal System Engineering and Information Technology, 10–16.

Isnaeni, Sudarmin, & Rais, Z. (2022). Analisis Support Vector Regression (Svr) Dengan Kernel Radial Basis Function (Rbf) Untuk Memprediksi Laju Inflasi Di Indonesia. Journal of Statistics and Its Application on Teaching and Research, 30-38.

James, G., Witten, D., & Tibshirani, T. H. (2020). An Introduction to Statistical Learning with Applications in R. New York Heidelberg Dordrecht London: Springer. doi:10.1007/978-1-4614-7138-7

Johnson, P. L., & Zhang, H. (2022). Analysis of Python Standard Library and Third-Party Libraries: Impact on Modern Software Development. IEEE Transactions on Software Engineering, 567-589.

Johnson, R., & Smith, K. (2023). Machine Learning Applications Using Scikit-learn. Journal of Machine Learning Research, 125-147.

Kumar, A., & Singh, R. (2023). Scalable decision tree algorithms for big data: A comprehensive review. Journal of Big Data, 1-25.

Kusumantara, P. M., Putrawanto, D. I., Mukaromah, S., & Agussalim. (2023). Analisis Model Peramalan Harga Minyak Mentah (Crude Oil)Menggunakan Weighted Moving Average. Jurnal Nasional Komputasi dan Teknologi Informasi, 395-401.

Lestari, I., Sumargo, B., & Ladayya, F. (2022). Pemodelan ARIMA Intervensi untuk Meramalkan Harga Minyak Mentah Dunia. Statistika, 133 – 146.

Li, X., Wang, Y., & Zhou, Z.-H. (2021). Adaptive Decision Tree Learning In Dynamic Environments. Jurnal: IEEE Transactions on Knowledge and Data Engineering, 3174-3186.

Lin, H., & Sun, Q. (2020). Crude Oil Prices Forecasting: An Approach of Using CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks. Energies, 1-21.

Martinez, A., & Johnson, B. (2024). TensorFlow: Evolution and Applications in Modern Deep Learning. Journal of Artificial Intelligence Research, 178-195.

Martinez, L., & Chen, W. (2021). Python in the Era of Digital Transformation: A Systematic Review. ACM Computing Surveys, 67-77.

McKinney. (2022). Pandas: Powerful Python Data Analysis Toolkit. Journal of Open Source Software, 6-23.

Muddana, A. L., & Vinayakam, S. (2024). Basic Python. India: Springer Nature Switzerland. doi:10.1007/978-3-031-52473-8_1

Nuha, H. H. (2023). Mean Squared Error (MSE) dan Penggunaannya. SSRN, 1-2.

Ogunleye, & Olufemi, J. (2021). The Concept of Data Mining. Artificial Intelligence, 1-18.

Paramita, R., Chasmir, D., Fakhreza, T. H., Lestari, V. P., & Ramiayu, D. D. (2023, Febuary 10). Lonjakan Harga Minyak Dunia Dan Mitigasi Risikonya. Retrieved from Badan Keahlian DPR RI: https://berkas.dpr.go.id/pa3kn/videografis/public-file/videografis-public-24.pdf

Rahma, A. K., Abidin, Q. Z., Prasetyo, J. K., Larasati, B., Amelia, D., & Chamidah, N. (2024). Prediction Of Crude Oil Prices In Indonesia Using Fourier Series Estimator And Arima Method. BAREKENG, 1673–1682.

Ramadhan, A. S. (2022, January 21). Decision Tree Algoritma Pada Data Mining. Retrieved from BINUS University School of Information Systems: https://sis.binus.ac.id/2022/01/21/decision-tree-algoritma-beserta-contohnya-pada-data-mining/

Redha, R. A., & Yousif, S. A. (2023). Crude Oil Price Forecasts Using Support Vector Regression and Technical Indicators. Iraqi Journal of Science, 2512-2520.

Richardson, & Thompson. (2023). Comprehensive Review of Machine Learning: From Theory to Application. IEEE Transactions on Artificial Intelligence, 156-172.

Published

2025-01-21

Issue

Section

Articles