IMPLEMENTASI LOGIN APLIKASI DENGAN FITUR AUTENTIKASI PENGGUNA MENGGUNAKAN FLUTTER DAN ML KIT FACE RECOGNITION
Abstract
This research aims to develop a login system using facial recognition technology on an Android application to enhance security. The main focus is to integrate Flutter and ML Kit Face Recognition, as well as to apply the Euclidean Distance method to improve authentication accuracy. The development method involves using Flutter as the framework and ML Kit Face Recognition for face recognition technology. Euclidean distance is implemented to measure the distance between facial features, allowing the system to distinguish faces more accurately. Testing was conducted with a diverse facial dataset to evaluate the performance and effectiveness of the system. The research results show that the combination of ML Kit Face Recognition and Euclidean Distance successfully enhances the security of Android applications, with the authentication system achieving a 90% accuracy rate in recognizing users' faces. This implementation has proven to be an effective and efficient solution for authentication in Android applications. The Euclidean Distance method successfully improved facial recognition accuracy significantly. In conclusion, the integration of Flutter, ML Kit Face Recognition, and Euclidean Distance offers a promising approach to Android user authentication, addressing security challenges in mobile application development. The findings of this research have implications for the development of a more secure authentication system and the improvement of the login process efficiency in Android applications..
References
M. K. S. M. H. S. K. Rachmat Destriana, Diagram UML Dalam Membuat Aplikasi Android Firebase. Deepublish, 2021. Accessed: Sep. 09, 2024. [Online]. Available: //library.stikom-bali.ac.id/index.php?p=show_detail&id=12067&keywords=
R. H. DESTRIANA, Diagram Uml Dalam Membuat Aplikasi Android Firebase : Studi Kasus Aplikasi Bank Sampah. Deepublish, 2021. Accessed: Sep. 09, 2024. [Online]. Available: //perpus-ft.umt.ac.id%2Findex.php%3Fp%3Dshow_detail%26id%3D1010
R. D. S. M. Husain;, DIAGRAM UML DALAM MEMBUAT APLIKASI ANDROID FIREBASE : Studi Kasus Aplikasi Bank Sampah. Deepublish, 2021. Accessed: Sep. 09, 2024. [Online]. Available: //perpustakaan.pnb.ac.id%2Findex.php%3Fp%3Dshow_detail%26id%3D11515%26keywords%3D
R. D. S. M. H. N. H. A. T. P. Siswanta;, Diagram UML dalam Membuat Aplikasi Android Firebase : Studi Kasus Aplikasi Bank Sampah. Deepublish, 2021. Accessed: Sep. 09, 2024. [Online]. Available: //www.akkeskartini-batam.ac.id%2Fopac%2Findex.php%3Fp%3Dshow_detail%26id%3D753%26keywords%3D
R. D. S. M. H. N. H. A. T. P. Siswanto;, Diagram UML dalam Membuat Aplikasi Android Firebase : Studi Kasus Aplikasi Bank Sampah. deepublish, 2021. Accessed: Sep. 09, 2024. [Online]. Available: //slims.unjaya.ac.id/index.php?p=show_detail&id=9694
R. DESTRIANA;, DIAGRAM UML DALAM MEMBUAT APLIKASI ANDROID FIREBASE STUDI KASUS APLIKASI BANK SAMPAH. DEEPUBLISH, 2021. Accessed: Sep. 09, 2024. [Online]. Available: //opac.univawalbros.ac.id%2Findex.php%3Fp%3Dshow_detail%26id%3D1866
D. Iskandar, N. Puspitasari, and M. A. Fathoni, “E-ABSENSI BERBASIS FACE RECOGNITION DI KODEKIDDO SOLO,” JURI, vol. 14, no. 1, p. 67, Jun. 2022, doi: 10.36723/juri.v14i1.330.
M. Yamin, T. T. Malethi, Monica, Jodhika, and S. Natali, “EVALUASI RISIKO PADA PENGGUNAAN PASSWORD YANG LEMAH: ANALISIS KASUS PENGGUNAAN PASSWORD UMUM,” JIMIK, vol. 1, no. 1, pp. 41–48, Aug. 2023, doi: 10.61674/jimik.v1i1.112.
“Face detection | ML Kit,” Google for Developers. Accessed: Oct. 14, 2024. [Online]. Available: https://developers.google.com/ml-kit/vision/face-detection
P. B. A. A. Putra, W. Widiatry, V. H. Pranatawijaya, and N. N. K. Sari, “IMPLEMENTASI APLIKASI ANDROID UNTUK SISTEM PENDAFTARAN DAN ANTRIAN PADA POLI COVID RSUD DORIS SYLVANUS,” Jurnal Teknologi Informasi: Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika, vol. 16, no. 1, Art. no. 1, Jan. 2022, doi: 10.47111/jti.v16i1.4011.
L. Fiqihilmi, “Implementasi Pengenalan Wajah Pada Aplikasi Presensi Perkuliahan Menggunakan FaceNet Berbasis Android,” JEITECH, vol. 1, no. 1, pp. 14–18, Jun. 2023.
C. Chazar, “Machine Learning Diagnosis Kanker Payudara Menggunakan Algoritma Support Vector Machine,” INFORMASI (Jurnal Informatika dan Sistem Informasi), vol. 12, pp. 67–80, May 2020, doi: 10.37424/informasi.v12i1.48.
Dr Solehudin et al., MANAJEMEN PROYEK DIGITAL. Cendikia Mulia Mandiri, 2023.
A. Kumar, Mastering Firebase for Android Development: Build real-time, scalable, and cloud-enabled Android apps with Firebase. Packt Publishing Ltd, 2018.
L. V. A. Saputra Muhammad Yusril Helmi Setyawan, Mohamad Harry Khomas, Memahami Metode Omax dan Promethee pada Sistem Pendukung Keputusan. CV. Kreatif Industri Nusantara, 2020.
S. Chen, Y. Liu, X. Gao, and Z. Han, MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices, vol. 10996. in Lecture Notes in Computer Science, vol. 10996. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-97909-0_46.
D. J. Pramono, Otomatisasi Tata Kelola Keuangan SMK/MAK Kelas XII. Kompetensi Keahlian Otomatisasi Tata Kelola Perkantoran. Program Keahlian Manajemen Perkantoran (Edisi Revisi). Penerbit Andi, 2021.
F. Fatmasari and S. Sauda, “Pemodelan Unified Modeling Language Sistem Informasi Enterprise Resource Planning,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, p. 429, Apr. 2020, doi: 10.30865/mib.v4i2.2022.
A. Ali and E. W. Faida, “PENERAPAN ALGORITMA MESSAGE DIGGEST ALGORITHM 5 PADA LOGIN SISTEM INFORMASI MANAGEMEN RUMAH SAKIT,” JTI, vol. 7, no. 2, p. 586, Sep. 2022, doi: 10.30736/informatika.v7i2.867.
M. Wali et al., PENGANTAR 15 BAHASA PEMROGRAMAN TERBAIK DI MASA DEPAN (Referensi & Coding Untuk Pemula). PT. Sonpedia Publishing Indonesia, 2023.
Ismail, Efitra, D. Ariestiandy, Y. Agusdi, and Sepriano, Pengantar Framework Populer Mobile Apps. PT. Sonpedia Publishing Indonesia, 2023.
M. T. El Ikhwan and A. F. S.Ag, Pengembangan Aplikasi Arsip Berbasis Web. Bypass, 2022.