KLASTERISASI KECENDERUNGAN KONSUMEN TERHADAP PEMILIHAN MENU MAKANAN MENGGUNAKAN K-MEANS PADA D’BESTO CABANG PONDOK BENDA
Abstract
D'Besto is one of the local franchise restaurants in Indonesia that specializes in serving American cuisine such as Kentucky Fried Chicken, burgers, and French fries. Based on the sales data from the D’Besto branch in Pondok Benda, employees are experiencing difficulties in making accurate decisions to understand consumer preferences regarding menu selections. Therefore, research is needed to identify the most favored menu items among consumers, in order to assist employees in predicting food stock levels. To determine the most popular menu items among consumers, Data Mining Clustering techniques and the K-Means Clustering method are employed. The K-Means Clustering method works by calculating the distance of data points to the nearest Centroid and updating the Centroid values until the Centroid points no longer change. The result of this research is to identify the most popular, moderately favored, and less favored menu items among consumers from July to December 2023. This study resulted in 3 Clusters: C2 contains 24 items consisting of 4 menu items, C1 contains 59 items consisting of 8 menu items, and C3 contains 127 items consisting of 23 menu items. This information serves as a basis for determining the appropriate stock levels for the D’Besto branch in Pondok Benda, focusing on purchasing ingredients for the most popular menu items.
References
A. Muhidin Dan S. Kevin Alfandara, “Analisis Data Mining Menggunakan Algoritma K-means Untuk Clustering Penjualan Studi Kasus Dapur Bu Ipung,” Vol. 13, 2022.
S. K. Dirjen Dkk., “Terakreditasi Sinta Peringkat 4 Klasterisasi Karakter Konsumen Terhadap Kecenderungan Pemilihan Produk Menggunakan K- means,” 2018.
H. Annur, “Penerapan Data Mining Menentukan Strategi Penjualan Variasi Mobil Menggunakan Metode K-means Clustering (Studi Kasus Toko Luxor Variasi Gorontalo),” 2019.
R. Wardana Nasution, I. Okta Kirana, I. Gunawan, I. Purnama Sari, Dan S. Tunas Bangsa, “Resolusi : Rekayasa Teknik Informatika Dan Informasi Penerapan Data Mining Untuk Pengelompokan Minat Konsumen Terhadap Pengguna Jasa Pengiriman Pada Pt. Jalur Nugraha Ekakurir (Jne) Pematangsiantar,” Media Online), Vol. 1, No. 4, [Daring]. Tersedia Pada: Https://Djournals.Com/Resolusi
N. Riyanah, S. Informasi, S. Tinggi, M. Informatika, D. Komputer, Dan N. Mandiri, “Penerapan Algoritma Naive Bayes Untuk Klasifikasi Penerima Bantuan Surat Keterangan Tidak Mampu (Implementation Of Algorithms Naïve Bayes For Classification Recipients Help Letter Description Not Able),” Vol. 2, No. 4, Hlm. 206–213, 2021.
J. Homepage, D. Rawan Banjir, D. Kabupaten, R. Hilir, E. Tasia, Dan M. Afdal, “Ijirse: Indonesian Journal Of Informatic Research And Software Engineering Comparison Of K-means And K-Medoid Algorithms For Clustering Of Flood-Prone Areas In Rokan Hilir District Perbandingan Algoritma K-means Dan K-Medoids Untuk Clustering”.
N. Suwaryo, A. Rahman, D. Marini, U. Atmaja, Dan A. Basri, “Klasterisasi Stok Produk Retail Untuk Menetukan Pergerakan Kebutuhan Konsumen Dengan Algoritma K-means,” Bulletin Of Information Technology (Bit), Vol. 4, No. 2, Hlm. 306–312, 2023, Doi: 10.47065/Bit.V3i1.
Y. Elda, S. Defit, Y. Yunus, Dan R. Syaljumairi, “Klasterisasi Penempatan Siswa Yang Optimal Untuk Meningkatkan Nilai Rata-Rata Kelas Menggunakan K-means,” Jurnal Informasi Dan Teknologi, Hlm. 103–108, Sep 2021, Doi: 10.37034/Jidt.V3i3.130.
M. Djaka Permana, A. Lia Hananto, E. Novalia, B. Huda, Dan T. Paryono, “Klasterisasi Data Jamaah Umrah Pada Tanurmutmainah Tour Menggunakan Algoritma K-means,” Jurnal Komtekinfo, Hlm. 15–20, Feb 2023, Doi: 10.35134/Komtekinfo.V10i1.332.